

Renovation in Cold Climate

Fritjof Salvesen
Operating Agent IEA SHC Task 37
KanEnergi AS
Norway

Task 37:

Advanced Housing Renovation with Solar and Conservation

TASK 37 Advanced Housing Renovation by Solar and Conservation

Whole building concepts for Advanced Housing Renovation with Solar and Conservation in Nordic countries.

Subtask C - Internal working document

Authors: Ulla Janson, Tor Helge Dokka, Michael Klinski and Bjørn Bergren, Marit Thyholt

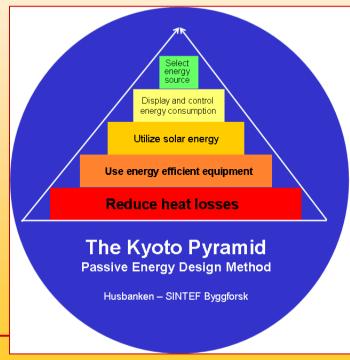
May 2010

Contents

- 1. Introduction
- 2. The housing stock
 - 2.1 Swedish housing stock
 - 2.2 Norwegian housing stock
- 3. Energy strategies
 - 3.1 Basic strategies for renovation
 - 3.2 Ambition levels for renovation
 - 3.3 Energy calculations
- 4. Costs and profitability assessments
 - 4.1 Different concepts for economical analysis
 - 4.2 Different approaches results in different outcomes
 - 4.3 Which concepts, assumptions and system boundaries should one use
- 5. Whole building concepts for energy and cost efficient renovation
 - 5.1 Small wooden houses
 - 5.2 Apartment buildings
- 6. Building physics and indoor climate related challenges
 - 6.1 Introduction
 - 6.2 Ventilation, air tightness and indoor air quality
 - 6.3 Thermal comfort
 - 6.4 Moisture- and mould proof constructions
 - 6.5 Software
- 7. Case studies
 - 7.1 Brogården in Alingsås (Sweden)
 - 7.2 Backa Röd (Sweden)
 - 7.3 Myhrerenga (Norway)

Task 37:

Advanced Housing Renovation with Solar and Conservation



Basic strategies for renovation

The passive design principles includes five steps:

 Reduce the heat loss as much as possible by insulating walls, floor and ceiling, new passive house windows, introducing a continuous air tight layer to achieve an air tight building envelope and installing balanced ventilation with high heat recovery efficiency (η > 75 %).

- Minimize the electricity demand, by using very efficient fans, pumps, appliances and lighting systems..
- Utilize solar energy,
- Control energy use and energy behaviour
- Choose energy source

Task 37

Advanced Housing Renovation with Solar and Conservation

Ambition levels for renovation

- In a lot of renovation projects it is practical or economical hard to achieve the "passive house" renovation level, due to:
 - different façade restrictions limits the insulation in the external wall
 - difficulties to achieve the passive house air tightness,
 - restriction on windows design so passive house windows can not be used,
 - the roof construction gives limitation for the insulation thickness

Proposed ambition level for ambitious energy renovation.

Ambition level for renovation	Space heating demand		
Level I: Low energy renovation	45 kWh/m²a		
Level II: Passive house renovation	25 kWh/m²a		

Components:		Typical	Renovation level	Renovation level	
		standard	I	П	
	U-value external walls	0.43 W/m ² K	0.21 W/m ² K	0.15 W/m ² K	SOLAR HEATING & COOLING PROGRAMME
	Example	10 cm	Up to 20 cm	Up to 30 cm	INTERNATIONAL ENERGY AGENCY
		insulation	insulation	insulation	Maria and the same for a
	U-value slab on ground	0.35 W/m ² K	0.35 W/m ² K	0,35 W/m ² K	Key numbers for
Щ	or basement ceiling	(equiv. 0.22)	(equivalent 0.22)	(equivalent 0.19)	small houses
		5 cm	Unchanged	10 cm added insul.	before and after
		insulation		on foundation wall	
M	U-value roof or attic	0.35 W/m ² K	0.12 W/m ² K	0.10 W/m ² K	renovation with
		12-13 cm	Up to 30 cm	Up to 35 cm	different ambition
		insulation	insulation	insulation	levels
	U-value windows and	2.8 W/m ² K	1.2 W/m ² K	0.80 W/m ² K	
	doors				
	Heat recovery (η)	-	80 %	80 %	
	Specific fan power	1.5 kW/m³/s	2.0 kW/m³/s	1.5 kW/m³/s	
		Exhaust	Balanced	Balanced	
		system	ventilation	ventilation	
	Air leakage rate (N50)	5.0 h -1	2.0 h ⁻¹	1.0 h ⁻¹	
			Measures around	Additional	
			windows and	measures to	
			doors	improve	
Ψ"	Thermal bridges	0.08 W/m ² K	0.07 W/m ² K	0.05 W/m ² K	
			As air leakage	As air leakage	
11	Net space heating	145 – 155	≤ 45 kWh/m²år	≤ 25 kWh/m²år	
	demand	kWh/m²år			
*	Local renewables	0 kWh/m²år	0 kWh/m²år	15 kWh/m²år	
				Solar collectors	5
				cover 50 % DHW	, J

Components:		Typical	Renovation level	Renovation level	
		standard	Ι	II	
	U-value external walls	$0.41 \text{ W/m}^2\text{K}$	$0.17 \text{ W/m}^2\text{K}$	$0.10 \text{ W/m}^2\text{K}$	
	Example	10 cm insulation	Up to 20 cm insulation	Up to 35 cm insulation	K
	U-value slab on ground or basement	Approx 0.4 W/m ² K	0.4 W/m ² K	U _{basementwall} : 0.09 W/m²K U _{slah} : 0.3 W/m²K	n h
		3 cm insulation	Unchanged	28 cm added insul. on basement wall	b re
S	U-value roof or attic	$0.23 W/m^2 K$	0.17 W/m ² K	0.08 W/m ² K	di
		15 cm insulation	Up to 25 cm insulation	Up to <u>50 cm</u> insulation	le
	U-value windows and doors	2.1 W/m ² K	1.2 W/m ² K	0.85 W/m ² K	
	Heat recovery (η) Specific fan power	- 1.5 kW/m³/s	80 % 2.0 kW/m³/s	80 % 1.5 kW/m³/s	
		Exhaust system	Balanced ventilation	Balanced ventilation	
	Air leakage rate (N50)	-	1 1/s m ²	0.3 1/s m ²	
			Additional measures to improve	Additional measures to improve	
	Net space heating demand	150 kWh/m²år	< 45 kWh/m²år	< 25 kWh/m²år	

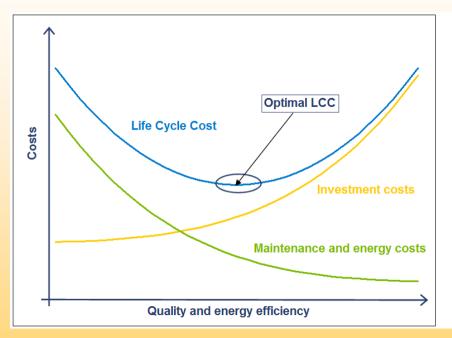
Key numbers for multi-family nouses

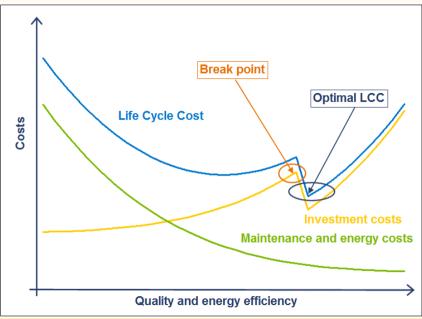
pefore and after renovation with different ambition evels

Different concepts for economical analysis described

- Simple payoff
 - Very easy to use

- $PBT = \frac{Capex}{Savings}$
- Method does not take into account increased value of the product, inflation, interest rates
- Life cycle cost LCC
 - All future costs are discounted to a present value
 - Can be used to optimize replacement cycles
 - Good method to compare two or more options
- Life cycle profit, LCP


$$LCP_n = \sum_{t=0}^{n} \left(RI_t - E \cdot \alpha (1+\beta)^t - M_t \right) + \frac{RV}{(1+R)^n} - Capex$$


 $LCC_n = \sum_{r=0}^{n} \frac{C_r}{(1+R)^t} + Capex$

- All future costs discuounted to apresent value
- Takes the rest value into account

COSTS AND PROFITABILITY ASSESSMENTS

- LCC of renovation standards, traditional thinking to the left
- Right figure; building envelope so effective that the heating system can be simplified or eliminated
- => Whole building evaluations are important to find the optimal solution

The report

Whole building concepts for Advanced Housing Renovation in Nordic countries

will be available for downloading early autumn from

www.iea-shc.org/task37

Thank you for your attention

www.iea-shc.org/task37

