PROJECT SUMMARY

Renovation of a historic building in Irdning built in 1567, with four flats and two shops. Complies with low energy requirement.

SPECIAL FEATURES

- Central mechanic ventilation system with heat recovery
- Activation of the thermal mass
- 8 m² solar panels for domestic hot water

ARCHITECT

Hegedys & Ull, Gebäude und Naturraum Projektierung GMBH

OWNER Mag. Manfred Hofer Private

Historic Building in Irdning - AT

IEA – SHC Task 37 Advanced Housing Renovation with Solar & Conservation

BACKGROUND

Before

After

The enclosure of this two storey, 16th century building was in a poor condition. The massive exterior walls were not insulated and damp. The original windows were still in place. Space heating was supplied by a central oil furnace to meet the demand of 205 kWh/(m²a). Domestic hot water was heated by electricity. In 2006 the building was renovated, with attention to ecological issues and the heating demand was reduced to 38 kWh/(m²a). The renovation was done without subsidies.

OBJECTIVES OF THE RENOVATION

- Reduction of the heating costs to a minimum
- Attention to ecological issues and using renewable resources
- Optimised building performanc meeting local "low energy standards"
- · Preservation of the exterior appearance of the building

SUMMARY OF THE RENOVATION

- High insulation of the facade, roof and basement
- Renovation of the old windows, restoration of the doors
- Closing in the part of the court space
- Construction of four flats
- Preservation of ceiling and walls with stucco ornamentation
- · Central ventilation system with heat recovery
- Solar panels for domestic hot water preparation
- District heating with biomass
- Activation of the thermal mass
- Modernized electrical and sanitary installations

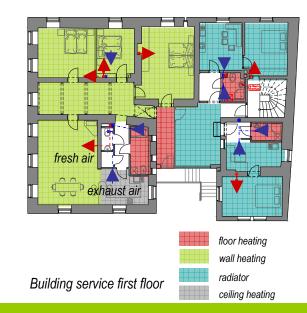
Section

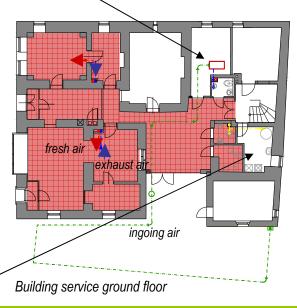
Renovated box-type window

CONSTRUCTION

Roof construction (interior to exterior)	U-value: 0.178 W/(m²·K)
plasterboard	15 mm
boarding	24 mm
cellulose insulation	220 mm
boarding	24 mm
ventilation space	
lathing	40 mm
roof covering	
Total	323 mm
Wall construction (interior to exterior)	U-value: 0.245 W/(m²·K)
lime plaster	15 mm
solid brick	500 mm
mineral wool insulation	140 mm
lime plaster	20 mm
Total	675 mm

Basement ceiling	U-value: 0.285 W/(m²·K)
(top down) slab	15 mm
floor screed	60 mm
cork insulation	130 mm
reinforced concrete floor	
crushed brick	150 mm
Total	455 mm




BUILDING SERVICES

A new central ventilation system with heat recovery (efficiency > 95%). A ground-air heat exchanger preheating cold incoming air. Space heating is provided by a biomass fired district heating. Heat is delivered by activating the thermal mass from the building and a few radiators. Domestic hot water is heated by solar panels and backed up by the central district heating, instead of a central electric boiler.

Solar panels on the roof

Summary of U-values W/(m²·K)

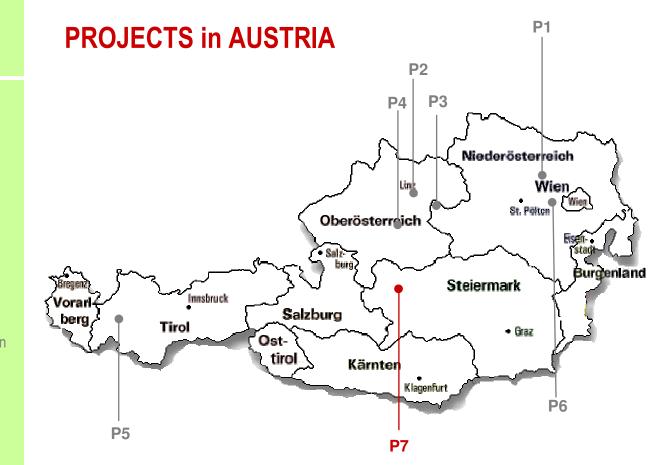
	Before	After
Attic floor	0.7	0.18
Walls	0.9	0.25
Basement ceiling	2.0	0.29
Windows	ca. 2.7	1.35

RENEWABLE ENERGY USE

8 m² solar panels for domestic hot water preparation are installed on the southeast oriented roof. High use of ecological material.

ENERGY PERFORMANCE

Space + water heating (primary energy)*Before:331.7 kWh/(m²a)After:24.64 kWh/(m²a)Reduction:93 %


* according to OIB Richtlinie 6

INFORMATION SOURCES

Hegedys & Ull Gebäude und Naturraum Projektierung GMBH Mitterlaßnitzberg 31 8302 Nestelbach bei Graz www.hegedys-ull.at

Brochure authors Sophie Grünewald, Sigrun Rottensteiner

Contact Thomas Mach thomas.mach@tugraz.at

PROJECT SUMMARY

- P1 Apartment building in Kierling
- P2 5 story apartment house in Linz
- P3 Enhancement house Wimmer in St. Valentin
- P4 Single-family house in Pettenbach
- P5 Old people's home in Landeck
- P6 Housing in Purkersdorf
- P7 Historic building in Irdning
- P8 Enhancement in Mautern
- P9 Attic conversion in Innsbruck
- P10 House Schilchegger in St. Martin
- P11 Single-family house Kraiger in Kufstein
- P12 Apartmentbuildings in Dornbirn

IEA – SHC Task 37 Advanced Housing Renovation with Solar & Conservation